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1. Introduction

The counting of microstates associated with the black holes in superstring theories is a

subject of current interest. The configurations are called BPS solutions which preserve part

of supersymmetry, and this is the key property in the above counting of microstates. Among

others, the BPS configurations called supertubes [1]-[29] has a dual realization in the brane

worldvolume as well as supergravity. The entropy obtained for the latter is beautifully

explained in the microstate counting in the former realization. This is especially successful

in the supertubes with 2 charges, which is realized as a round D2-brane configuration of

tubular shape involving D0 and F1 on the worldvolume. (For other related discussions, see

refs. [30]-[34].)

There are also more interesting solutions corresponding to supertubes with 3 and 4

charges, which have been less understood [25]-[28]. The configurations may have various

forms of realization involving three branes in addition to certain numbers of dipole charges,

which may be related by duality transformations. So it is convenient to consider the

configurations in the context of M-theory. In this paper, we construct these solutions in

the M-theory using the covariant action of M5-branes [35] and study their properties. To
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discuss this class of solutions, we have to study the BPS equations whose solutions are the

objects of our interest.

The configurations we consider for 3-charge case can be schematically written as

M2 1 2

M2 3 4

M2 5 6

m5 1 2 3 4 θ

m5 1 2 5 6 θ

m5 3 4 5 6 θ

(1.1)

where M2 stands for M2-branes lying in (12), (34) and (56) spatial directions within the

“round” M5-branes in (1234θ), (1256θ), (3456θ) directions where 1-6 refer to the directions

in the tangent space. Later we shall find that the shape of m5 can be much more general

than the above. The circular direction of the M5-branes is parametrized by the angle θ

in the (789\) directions of the target space (\ stands for 10). The total charges of these

M5-branes are zero and for this reason they are denoted as m5. The M2-branes can be

understood as induced by the background fields on the worldvolume of m5-branes.

If we put one of the M2-brane charges to zero, say the third one, we could forget about

the second and third m5-branes, and get M-theory realization of supertubes with 2 charges

(see for instance [10]).

Using the covariant action for M5-branes, we make a detailed analysis of 3-charge con-

figurations (1.1) and briefly discuss the extension to 4-charge case. In section 2, we derive

the BPS equations from the kappa symmetry in the M5-brane action [35]. In section 3, we

work out the solutions explicitly. Specifically we consider the case in which the worldvol-

ume of m5 is T 4 which is embedded inside the target space of T 6. This configuration is

also discussed in ref. [26], but our construction is more explicit and contains new solutions

involving three arbitrary functions of θ. In section 4, we derive the conserved charges of

the system and discuss the bound on the curve imposed by these charges. This should be

useful for the counting of the microstates for fixed conserved charges [20]. In section 5, we

consider the embedding of m5 and M2 system into a Calabi-Yau (CY) 3-fold instead of T 6,

and repeat the similar analysis of the BPS solutions. One of the resulting BPS equations is

a nonlinear instanton equation [39] whose quadratic fluctuations for the degeneracy count-

ing and understanding the related fluctuations is briefly touched upon. In section 6, we

briefly discuss the generalization to the case of four M2-charges in the tangent space of T 8

or CY 4-fold. Section 7 is devoted to conclusion.

2. BPS equations

We aim to construct the configuration (1.1) with the covariant action of M5-brane proposed

in ref. [35], and use the same notation. In particular, we should note that the flat metric

is chosen as ηab = diag(+1,−1,−1, . . .).

The worldvolume of m5 is parametrized by (t, σi, θ), (i = 1, 2, 3, 4), its embedding into

the flat target space is given by (T, Y a(σi)), (a = 1, . . . , 6), and the m5-brane curve in the
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(7, 8, 9, \) space is denoted by Xm(θ), (m = 7, 8, 9, \). We fix the gauge t = T . The induced

vielbein on the worldvolume

ea
i =

∂Y a

∂σi
, (2.1)

relates the gamma matrices as

γi = ea
i Γa = ∂iY

aΓa, γ0 = Γ0, γ5 = Xm′Γm, (2.2)

and the induced metric

g00 = 1, gij = ∂iY
a∂jYa, g55 = Xm′X ′

m, (2.3)

where 5 denotes θ, the 5-th worldvolume coordinate, and the prime is its derivative.

Let us now find out the BPS equations. They should be derived from the kappa

symmetry [35], which gives

(Γ + 1)ε = 0, (2.4)

where

Γ =

√−g
√

−det(g + iH)

[

γ(6)

√−g
+

i

2
√

−(∂a)2
Hmnγmnγp∂

pa+

+

√−g

8(∂a)2
∂m1aεm1...m6

Hm2m3Hm4m5γm6γp∂
pa

]

, (2.5)

where ε012345 = −ε012345 = 1, and g is the determinant of the five-dimensional induced

metric.

We expect the solution is given by the projection

ε = Pε0; P = P1P2P3, (2.6)

where P1 = 1+iΓ012

2 , P2 = 1+iΓ034

2 , P3 = 1+iΓ056

2 are the projectors. We choose our gauge for

a as

a = t, (2.7)

so that (∂a)2 = 1. Our task is now to examine what conditions on the fields we get from

(2.4).

The first term in (2.5) involves

γ(6) = γ0 . . . γ5 = Γ0γ5Γabcdf
abcd, (2.8)

where we have defined

fabcd =
1

4!
εijklea

i e
b
je

c
ke

d
l . (2.9)
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The term (2.8) produces two different kinds of terms:

fabcdΓabcdP = −1

2
fabcdεabcdef εef P − 3 εab

(

fabceεed − fabdeεec
)

ΓcdP, (2.10)

depending on whether (a, b, c, d) belong to two sets out of (12), (34) and (56), or c and d

belong to different sets other than (a, b). Here we have used the projection condition (2.6)

and defined εab as 6 × 6 matrix:

(ε)ab ≡







I 0 0

0 I 0

0 0 I






; I ≡

(

0 1

−1 0

)

. (2.11)

The second term in (2.5) is decomposed as

1

2

[

2f (05)γ0γ5 + 2f (0)aγ0Γa + 2f (5)aγ5Γa + fabΓab

]

γ0, (2.12)

where we have defined

fab = H ijea
i e

b
j , f (0)a = H0iea

i , f (5)a = H5iea
i , f (05) = H05. (2.13)

The first three terms in eq. (2.12) are rewritten as

−γ5f
(05) − Γaf

(0)a + Γ0γ5Γaf
(5)a, (2.14)

and the last term yields

− i

2
εabf

abP +
1

4
Γ0Γab(f

acεcb − f bcεca)P . (2.15)

Finally we come to the third term in (2.5). We find that they give

−
√−g

8

[

εijklH
ijHklg55γ5 + 4εijklH

jkH l5γi
]

Γ0 =

= −
√−g

8

[

|g55|εijklH
ijHklΓ0γ5 + 4εijklH

jkH l5gimea
mΓaΓ0

]

= −
√−g

8

[

|g55|εijklH
ijHklΓ0γ5 − i4εijklH

jkH l5gimea
mΓbεab

]

. (2.16)

We have the γ5 term only in the first term in (2.14) to obtain

f (05) = 0, (2.17)

and Γ0γ5 terms only from the first term in (2.10) and (2.16), so

1

2
εabcdeffabcdεef +

|g|
8
|g55|εijklH

ijHkl = 0. (2.18)

The second term in (2.10) is the only γ5Γcd term, so we must have

εab
(

fabceεed − fabdeεec
)

= 0. (2.19)
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The second term in (2.14) and the last term in (2.16) involving Γa give

f (0)a − i

2

√−gεijklH
jkH l5gimeb

mεb
a = 0. (2.20)

The third term in (2.14) gives

f (5)a = 0 , (2.21)

and so H l5 = 0. Combined with (2.20), this gives

f (0)a = 0 . (2.22)

The last term in (2.15) gives

facεcb − f bcεca = 0, (2.23)

Finally the first term in (2.15) should cancel 1:

− i

2
εabf

ab +

√

−det(g + iH)√−g
= 0. (2.24)

We have thus derived all the BPS equations resulting from the kappa symmetry. They

are eqs. (2.17) — (2.24). We are now going to find solutions to these equations.

3. BPS solutions

To solve our BPS equations, we first make further gauge choice

(Y 1, Y 2, Y 3, Y 4) = (σ1, σ2, σ3, σ4). (3.1)

Let us first examine (2.19). Defining the complex coordinates

Z = Y 5 + iY 6; w1 = σ1 + iσ2, w2 = σ3 + iσ4, (3.2)

and writing explicitly the indices, we find

f1,2,3+i4,5+i6 = f3,4,1+i2,5+i6 = f5,6,1+i2,3+i4 = 0. (3.3)

Using the definition (2.9), we find that (3.3) is equivalent to

∂w̄1
Z = ∂w̄2

Z = 0. (3.4)

(The last equality in (3.3) follows from these relations.)

Next (2.23) can be rewritten as Hw1w2 = Hw1j∂jZ = Hw2j∂jZ = 0. The latter two

conditions follow from (3.4) and Hw1w2 = 0, so the first condition

Hw1w2 = 0, (3.5)

is the only relevant relation. We note that this can be also written as

H13 = H24, H14 = H32. (3.6)

On the other hand, (2.17), (2.21) and (2.22) mean that

H50 = H5i = H0i = 0. (3.7)

– 5 –
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3.1 General analysis of BPS equations

To examine the remaining conditions (2.18) and (2.24), we need the induced metric (2.3):

gij = −δij −
1

2
(∂iZ∂jZ̄ + ∂jZ∂iZ̄). (3.8)

With the help of (3.4), one may show that g12 = 0, g34 = 0 and

g11 = g22 , g33 = g44 , g13 = g24 , g14 = −g23 . (3.9)

Also by a direct computation, it is straightforward to show that

g(4) = detgij = (g11g33 − g2
13 − g2

23)
2 = (1 + ∇Z · ∇Z̄/2)2 . (3.10)

Then (2.18) can be cast into

1

8

√

g(4) εijklH
ijHkl = −1. (3.11)

One also has

−det(g + iH) = |g55|g(4)

[

1 − 1

2
HijH

ij +
1

82
(
√

g(4)εijklHijHkl)
2
]

, (3.12)

which may be rearranged to

−det(g + iH)

|g| =

(

1 +

√
g(4)

8
εijklH

ijHkl

)2

−
(

1

2
HijH

ij +

√
g(4)

4
εijklH

ijHkl

)

. (3.13)

Using the properties of gij , the term in the second parenthesis may be written as

{H12g11 + H34g33 − (H13 + H24)g14 + (H14 + H32)g13}2 +

+{(H13 + H42)2 + (H14 + H23)2}(g11g33 − g2
13 − g2

14), (3.14)

whose second term vanishes due to (3.6). Since the first term in (3.13) is zero due to (3.11),

the BPS equation (2.24) reduces to

√

−det(g + iH)√−g
= −i(H12g11 + H34g33 − 2H13g14 + 2H14g13) =

i

2
εabfab . (3.15)

Using (3.4) and (3.8), it is easy to check that this is automatically satisfied.

To summarize, our BPS equations are eqs. (3.4), (3.6), (3.7) and (3.11) which can be

written as

(

1 +
|∇Z|2

2

)

(H12H34 − (H13)2 − (H23)2) = −1 . (3.16)

There is still an equation one has to satisfy [36, 37]:

Hmnp∂
pa = Vmn, (3.17)

– 6 –
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where Vmn is defined by

Vmn = −2

√

−(∂a)2√−g

∂
√

−(g + iH)

∂Hmn
. (3.18)

Also Hmn is defined by

Hmn =
1

3!
√−g

√

−(∂a)2
εmnlpqrHpqr∂la, (3.19)

from which the equation, H i0 = H50 = 0, follows with the gauge choice a = t.

In the present case, one has

H ij = − i

2
√−g

εijklHkl5, (3.20)

and V ij is given by

Vij =
i
√−g

√

−(g + iH)

(

Hij +
1

2

√

g(4) εijklH
kl

)

. (3.21)

Using (3.15), one finds

Fij ≡ Hij0 =

√
g(4)(hij + 1

2
√

g(4) εijklh
kl)

(g11h34 + g33h12 + 2g14h13 + 2g13h41)
, (3.22)

where we have defined

hij = Hij5/
√

|g55|. (3.23)

From this and (3.6), one may show that

F12 = g11 , F34 = g33,

F13 = F24 = −g14 , F14 = F32 = g13. (3.24)

This may be succinctly written as

Fij =
1

2
(εikgkj − εjkgki), (3.25)

which is proportional to the Kähler two form. Introducing the Kähler form k = gpq̄dwp ∧
dw̄q̄, we get F = Fpq̄dwp ∧ dw̄q̄ = ik where p, q, r = 1, 2 and p̄, q̄, r̄ = 1, 2 denoting

respectively the holomorphic and antiholomorphic indices of the m5 worldvolume. The

Bianchi identity is satisfied since the Kähler form is closed, i.e. dk = 0.

In addition, using (3.6), one may show that

h13 = h24 , h14 = h32 . (3.26)

Finally, one may consider more general ansatz where Y a’s are also dependent on θ, i.e.

Y a(σi, θ) and Xm(θ). The induced metric in the 5 space including the θ direction may be

written as

ds2
(5) = gijdσidσj + 2gi5dσidθ + g55dθ2 (3.27)

– 7 –
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where

gij = ∂iY
a∂jYa , gi5 = ∂iY

aY ′
a , g55 = Xm′X ′

m + Y a′Y ′
a . (3.28)

The similar analysis of BPS equations goes through in this case too. With the gauge choice

of (3.1), Z should be holomorphic function of wp and Hw1w2

= 0 with H0i = H05 = H i5 =

0. Considering the three form, Hijk = 0 follows from the relation H i5 = 0. We introduce a

two form in the four space by h̃ij = Hij5. Then dh̃ = 0 due to the Bianchi identity of the

three form field.

Eq. (3.17) implies Fij0 dσi ∧dσj = igpq̄ dwp ∧dw̄q̄, Fp50 = igp5 and Fp̄50 = −igp̄5. With

these expressions, the Bianchi identity for the three form field can be checked. The final

BPS equation is given by

1

8
εijkl h̃ij h̃kl = G55

√

g(4) , (3.29)

where G55 = |g55 − gijgi5gj5|. Though interesting, we will not analyze this generalization

further in this note.

3.2 A simple case

Let us pause to discuss the simple case of Z = 0. We have gij = −δij . From the BPS

equations, there are following set of simple solutions. By eq. (3.26), we set

h13 = h24 = a(θ) , h14 = h32 = b(θ) , h12 = c(θ), (3.30)

where a, b and c are arbitrary function of θ only. Noting that H12 = −ih34,H
34 =

−ih12,H
13 = ih24 and H23 = −ih14, we find from (3.16)

h34 = (1 + a2 + b2)/c . (3.31)

Further, one finds F12 = F34 = −1 and F13 = F24 = F14 = F32 = 0. This is a good solution

for the case where 123456 directions are compactified on T 6.

3.3 New solutions

Using (3.10) in (3.20), we have

H12 =
−i

1 + 1
2 |∇Z|2 h34, H34 =

−i

1 + 1
2 |∇Z|2 h12,

H13 = H24 =
i

1 + 1
2 |∇Z|2

h24, H23 = −H14 =
−i

1 + 1
2 |∇Z|2

h14. (3.32)

Combined with (3.16), this yields

h34h12 − h2
24 − h2

14 = 1 +
1

2
|∇Z|2. (3.33)

One has to impose various condition on the field strengths following from the Bianchi

identity. It is

εijkl∂jhkl = 0 . (3.34)

– 8 –
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Introducing the potential bi by hij = ∂ibj − ∂jbi, eq. (3.26) may be rewritten as

h13 − h24 + i(h14 + h23) = (∂1 + i∂2)(b3 + ib4) − (∂3 + i∂4)(b1 + ib2) = 0. (3.35)

The general solutions are given by

b1 + ib2 = (∂1 + i∂2)(GR + iGI) , b3 + ib4 = (∂3 + i∂4)(GR + iGI) . (3.36)

Choosing the gauge GR = 0 and introducing G = −GI , this is written as

bi = εij∂jG . (3.37)

One then finds

h12 = −(∂2
1 + ∂2

2)G , h34 = −(∂2
3 + ∂2

4)G ,

h13 = (∂1∂4 − ∂2∂3)G , h14 = −(∂1∂3 + ∂2∂4)G . (3.38)

Similarly one has

ai = εij∂jK (3.39)

for Fij = ∂iaj − ∂jai. It is easy to show that K giving (3.24) is

K =
1

4
(|w1|2 + |w2|2 + |Z|2) (3.40)

which is proportional to the Kähler potential.

Since (3.33) may be written as

h34h12 − h2
24 − h2

14 = F34F12 − F 2
13 − F 2

14, (3.41)

there is a trivial solution G = ±K. This is the solution presented in ref. [26], which does

not include any arbitrariness in the field strengths. We would like to examine whether

there exist other independent solutions.

The solutions (3.30) and (3.31) of the Z = 0 case involve three arbitrary functions of

θ. We expect that the similar type of solutions exist for the nonvanishing Z. We shall find

new solutions involving the arbitrariness in the field strengths.

Let us now present our new solutions that involve arbitrary functions. Consider the

case where Z = f1(w1)+ f2(w2) where fa are arbitrary holomorphic functions that depend

only on wa. For this, the metric becomes

g11 = −1 − f ′
1f̄

′
1 , g33 = −1 − f ′

2f̄
′
2,

g13 = −1

2
(f ′

1f̄
′
2 + f ′

2f̄
′
1) , g14 =

i

2
(f ′

1f̄
′
2 − f ′

2f̄
′
1). (3.42)

The solution involving arbitrary functions of θ then becomes

h12 = −c(θ)(1 + f ′
1f̄

′
1) , h34 = −1 + f ′

2f̄
′
2

c(θ)
,

h14 = −eia(θ)

2
f ′
1f̄

′
2 −

e−ia(θ)

2
f ′
2f̄

′
1 ,

h13 = −i
eia(θ)

2
f ′
1f̄

′
2 + i

e−ia(θ)

2
f ′
2f̄

′
1 , (3.43)

– 9 –
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One can check that the above satisfy (3.41) and the Bianchi identity. In fact, we find that

the gauge potential (3.37) giving these field strengths is

G =
c(θ)

4
(|w1|2 + |f1|2) +

|w2|2 + |f2|2
4c(θ)

+
eia(θ)

4
f1f̄2 +

e−ia(θ)

4
f̄1f2. (3.44)

To complete the analysis, one may consider a small fluctuation around the solution

hij = 1
2(εikgkj − εjkgki). The small perturbation equation becomes

(1 + f ′
1f̄

′
1)∂w2

∂w̄2
δG + (1 + f ′

2f̄
′
2)∂w1

∂w̄1
δG − f ′

1f̄
′
2 ∂w2

∂w̄1
δG − f ′

2f̄
′
1 ∂w1

∂w̄2
δG = 0. (3.45)

One can check the above deformation by a and c gives two independent solutions to these

zero-mode equations. To check if this exhaust all possibility, let us find out the number of

zero modes.

3.4 Zero-mode equations

We first consider the simplest case where f1 = f2 = 0 (Z = 0). The zero-mode equa-

tion (3.45) becomes the Laplace equation in the flat four dimensions:

(∂2
1 + ∂2

2 + ∂2
3 + ∂2

4)δG = 0 , (3.46)

which leads to the equation

(∂2
1 + ∂2

2 + ∂2
3 + ∂2

4)δhij = 0 , (3.47)

together with the Bianchi identity.

For the case of T 4, δhij defined on T 4 should have the absolute minimum, which

contradicts the properties of Laplace equation unless δhij ’s are constant functions.

For the case of flat four plane, again δhij should be constant if one does not allow singu-

larity or divergences at infinity. Then one may show that there are only three independent

regular solutions,

δh12 = −δh34 = δc(θ),

δh13 = δh24 = δa(θ),

δh14 = δh32 = δb(θ), (3.48)

where δa, δb, and δc are functions of θ only. This is consistent with the full solution

in (3.30).

Let us consider the general compact four Kähler manifold with a Kähler metric gpq̄.

The equation we have to solve is the hermitean Yang-Mills equation

gpq̄δhpq̄ = 0, (3.49)

with δhpq = δhp̄q̄ = 0. Of course the Bianchi identity

d δh = 0, (3.50)
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has to be satisfied. Note that the hermitean Yang-Mills equation combined with the Bianchi

identity implies that

d†δh = 0 , (3.51)

which follows from gpq̄∇pδhq̄r = ∇r(g
pq̄δhpq̄). Therefore δh is a harmonic (1,1) form which

satisfies an additional constraint of the hermitean Yang-Mills equation (3.49). From the

above computation, the harmonic (1,1) form satisfies in general

gpq̄δhpq̄ = C, (3.52)

where C is constant. Therefore the number of zero mode, I, in the compact Kähler space

is given by

I = h1,1 − 1, (3.53)

where hp,q denotes the Hodge number of the harmonic (p, q) form. For Z = 0, the four

manifold describes T 4, whose Hodge number h1,1 is four. Thus for Z = 0, I = 3, which is

consistent with the explicit construction (3.48).

For S2 ×S2 which is Kähler, h1,1 = 2 and, hence, I = 1. More explicitly, let us use the

complex coordinate w1 and w2 for the spheres. Then the harmonics forms are given by the

volume forms
√

g(1)dw1 ∧ dw̄1 and
√

g(2)dw2 ∧ dw̄2. The hermitian Yang-Mills equations

are satisfied only by

δh =
√

g(1)dw1 ∧ dw̄1 − √

g(2)dw2 ∧ dw̄2 . (3.54)

Therefore we find that I = 1 by the explicit construction.

4. Charges and conserved quantities

In order to understand what microstates are possible, we should look at the configurations

with various conserved quantities fixed [23]. In this section, we derive explicit expressions

of these quantities and examine bounds on the shapes of the BPS configurations.

From the Chern-Simons term,

1

2

∫

H ∧ C(3), (4.1)

the M2-brane charge density extended in the (ij) direction can be identified as1

Qij =
1

4π
εijkl

∫ 2π

0
dθHkl5 =

1

4π
εijkl

∫ 2π

0
dθhkl

√

|g55| (4.2)

where the density is the charges per unit coordinate area in the (kl) directions2. To

compute the angular momentum, let us first compute the linear momentum density in the

θ direction. This is given by

P5 = Π0ijH5ij, (4.3)

1The actual charge here is twice of the above Chern-Simons contribution [37].
2Here we consider the holomorphic four submanifold independent of θ for simplicity.
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where the displacement Π0ij is defined by

Π0ij =
∂L

∂Ȧij

=

√−g

2
H∗0ij =

1

4
εijklHkl5 =

i
√−g

2
H ij . (4.4)

For the momentum density, we ignore the contributions from other fields or time depen-

dence, which vanishes due to the BPS conditions. Using the expression for the displacement

and (3.11), the momentum density is evaluated as

P5 = −√

g(4)|g55|
√

g(4)

8
εijklH

ijHkl =
√

g4X
′
mX ′

m. (4.5)

In the target space viewpoint, the momentum density along the circle direction of tube, is

then given by

Pm =
√

g(4) X ′
m . (4.6)

The angular-momentum density in the transverse space is given by

Jmn =

√
g(4)

π

∫

R

dXm ∧ dXn . (4.7)

where R denotes the region enclosed by the arbitrary curve C of Xm(θ).

Since the angular momentum is proportional to the area, the length L of the cross

section of the supertube

L =
1

2π

∫ 2π

0
dθ

√

X ′
mX ′

m , (4.8)

is bounded from below by the square root of the area [20]. When the curve is confined in

the (12) space, one has the bound

|J12| ≤
√

g(4) L2 . (4.9)

Considering more general curve, one may get

|J ′
12| + |J ′

34| ≤
√

g(4) L2 , (4.10)

where J ′
12 and J ′

34 represents the value of Cartans when only Cartans remain nonvanishing

by the SO(4) rotations.

The curve is also constrained by the combination of charges. The inequality is given by

√

g(4) L2 ≤ W (Q), (4.11)

where

W (Q) =
1

8
|εijklQijQkl| . (4.12)

– 12 –



J
H
E
P
0
1
(
2
0
0
6
)
0
7
2

The proof is as follows. Let us work in the local Lorentz frame where Qij is block diago-

nalized with only nonvanishing components Q12 and Q34. Then one has

√

|Q12Q34| ≥
1

2π

∫ 2π

0
dθ

√

|g55|
√

|h12h34| ≥
1

2π

∫ 2π

0
dθ

√

|g55|
√

|εijklhijhkl/8|

≥ (
√

g(4))
1

2

1

2π

∫ 2π

0
dθ

√

|g55|. (4.13)

Therefore the arbitrary curve is constrained by the conserved quantities as

|J ′
12| + |J ′

34| ≤
√

g(4)L
2 ≤ W (Q) . (4.14)

This describes the moduli fluctuation of the bosonic degrees with conserved charges and

angular momentum.

For the case of T 6, one has 3 kind of simple holomorphic four cycles defined by Zα = Cα

(α = 1, 2, 3) and let us consider the case where m5 wraps each four cycle once. Then for

each four cycle, we get the above inequality. Hence we get

|J ′
12| + |J ′

34| ≤
√

g(4)L
2 ≤ Min[W (Q(1)),W (Q(2)),W (Q(3))] , (4.15)

where I = 1, 2, 3 label the three holomorphic four cycles. We get the further restriction

because each cycle puts independent restrictions.

Finally the total energy of the system for the supertubes is given by

E = −
∫ 2π

0
dθ

√

|g55|
∫

P

h ∧ F, (4.16)

where P denotes the holomorphic four submanifold.

5. M-theory on a CY space

In this section, we would like to consider the embedding of m5 and M2 system into a CY 3-

fold instead of T 6. As before, the m5-branes wrap four cycles of the CY and the remaining

one direction forms an arbitrary curve in 789\ directions which is again taken to be flat.

5.1 Killing spinor

Before describing the m5-brane problem, let us first describe the Killing spinor of M-theory

CY compactification. In this compactification, the remaining Killing spinor has eight real

components corresponding to N = 2 supersymmetries. To describe the nature of this

spinor, we start from 32 component complex spinor which has twice as many components

of the maximal Killing spinor in eleven dimensions. Further we introduce a vielbein for the

CY space whose only purely holomorphic or antiholomorphic components are nonvanishing.

This gauge choice of vielbein is possible whenever the space is hermitian. The CY metric is

then given by gαβ̄ = Eγ
αEγ̄

β̄
where the vielbein Eβ

α satisfies Eβ̄
ᾱ = (Eβ

α)∗ with α, β, γ = 1, 2, 3.

The eleven-dimensional gamma matrices are taken to be pure imaginary.
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The remaining component of the Killing spinor is constructed as follows. Consider a

spinor satisfying the projection

Γ̃ᾱε+ = 0, for α = 1, 2, 3, (5.1)

where we define ε± by the projection

Γ(7)ε± = ±ε± , (5.2)

with Γ(7) = iΓ1Γ2 · · ·Γ6.

The gamma matrices Γ̃ᾱ is defined by 1
2(Γ2α−1 + iΓ2α) whereas Γ̃α by 1

2(Γ2α−1− iΓ2α).

At this stage, the total 32 complex space is projected by the factor of 1/4. We then impose

the two conditions

Γ̃αΓ̃βΓ̃γε+ = εαβγε− ,

ε− = ε∗+ , (5.3)

where the first choice relies on the existence of the nowhere vanishing holomorphic (3, 0)

form. By these two conditions, the space of spinor is further projected down by the factor

of 1/4. The real eight-dimensional spinor is constructed by

εCY = cε+ + c∗ε−, (5.4)

where c is an arbitrary constant. This is the Killing spinor we use for the study of BPS

configuration of the CY compactification.

The induced vielbein on the worldvolume

ea
i =

∂Y b

∂σi
Ea

b , (5.5)

relates the gamma matrices as

γi = ea
i Γa = ∂iY

aEb
aΓb, γ0 = Γ0, γ5 = Xm′Γm, (5.6)

and the induced metric

g00 = 1, gij = ∂iY
a∂jY

bgab, g55 = Xm′X ′
m. (5.7)

Then the kappa symmetry condition is given by the same expressions as those in (2.4)

and (2.5).

The analysis of the BPS equations of section 2 goes through if we choose a projection

Γ0ε+ = −ε+, (5.8)

which leads to P1εCY = P2εCY = P3εCY = εCY . Further half of the supersymmetries are

projected out and only four real supersymmetries remain unbroken. The BPS equations

then become those in (2.17) – (2.24).
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5.2 Analysis of the BPS equations

To solve our BPS equations, we make again further gauge choice

(Y 1, Y 2, Y 3, Y 4) = (σ1, σ2, σ3, σ4). (5.9)

and introduce the complex coordinate

Z = Y 5 + iY 6 = Z3; w1 = σ1 + iσ2 = Z1, w2 = σ3 + iσ4 = Z2, (5.10)

Then eq. (2.19) may be written as

εabf
abᾱβ̄ = 0 . (5.11)

This equation is solved by any holomorphic function Z satisfying

∂w̄1
Z = ∂w̄2

Z = 0 . (5.12)

To show this, let us solve eq. (5.11) for ᾱ = 2 and β̄ = 3. The equation becomes

εijkl∂iZ
α∂jZ̄

β̄∂kZ̄
γ̄∂lZ̄

δ̄E1
αE1̄

β̄
E2̄

γ̄E3̄
δ̄

= εijkl∂iZ
α∂jZ̄

1̄∂kZ̄
2̄∂lZ̄

3̄det(Eγ̄

δ̄
)E1

α = 0 . (5.13)

Considering also ᾱ, β̄ = 1, 2 and ᾱ, β̄ = 1, 3 and noting det(Eγ̄

δ̄
) 6= 0, one gets

εijkl∂iZ
α∂jZ̄

1̄∂kZ̄
2̄∂lZ̄

3̄ = 0 , (5.14)

which leads to the holomorphicity condition (5.12). Eq. (2.23) is again solved for

Hw1w2 = hw1w2
= 0, (5.15)

and eqs. (2.20) and (2.21) imply

H i5 = H05 = 0 . (5.16)

Eq. (2.18) can be written as

1

8

√

g(4)εijklH
ijHkl = −1, (5.17)

and the last BPS equation (2.24) follows automatically as before. The constraint equa-

tion (3.17) is again solved by (3.25). Thus we are left with the final equation

1

8
√

g(4)
εijkl hijhkl = 1, (5.18)

with the Bianchi identity dh = 0. One of the trivial solution of the equation is given by

h = ik, (5.19)

where k is the Kähler two form.
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The most general solutions are described as follows. m5 wraps holomorphic four cycles,

which is classified by the the Hodge number h1,1(M) of the CY manifold M . Or the four

cycles are described by codimension 1 hypersurface defined as a zero locus of holomorphic

function on M . This precisely corresponds to divisor of the CY manifold M . Each section

of line bundle L on M is in one-to-one correspondence with divisor P . The deformation

space of the divisor is given by 2(h0(M,L(P )) − 1) = 2h2,0(P ) [38].

For any such four cycles P in M , one has to solve the nonlinear instanton equa-

tion (5.18). The full nonlinear analysis of the equations seems very complicated. But one

may find the dimension of the solution space by linearizing the equation around the trivial

solution h = ik + δh. δh satisfies the hermitean Yang-Mills equation. The solutions are

harmonic (1, 1) form on P with one extra constraint that the harmonic (1, 1) form should be

anti-selfdual. The only selfdual harmonic (1, 1) form is the Kähler two form. The number

of dimensions of anti-self-dual harmonic (1, 1) form is thus h1,1
− (P ) = h1,1(P ) − 1.

Thus for each cohomology class of H1,1(M), most general solutions involves 2h2,0(P )+

h1,1(P ) − 1 = b2(P ) − 1 arbitrary functions of θ in addition to the arbitrary curve in 789\

directions, where b2 is the Betti number. The curve involves only 3 physical degrees of

the transverse fluctuation because of the reparametrization invariance along θ directions.

Therefore the total number of degrees involved with the arbitrary function of θ is given by

b2(P ) + 2, which is related to the Euler number by

b2(P ) + 2 = χ(P ) + 4b1(P ). (5.20)

If the divisor is very ample, one has b1(P ) = b1(M) and then b2(P ) + 2 = χ(P ). (Here

we use the property b1(M) = 0 for a CY manifold of exactly SU(3) holonomy and not its

subgroup.) The Euler number is evaluated as

χ(P ) =

∫

M

(P 3 + Pc2(M)), (5.21)

where P is the (1, 1) form of M dual to the divisor and c2 is the second Chern class.

For the divisor P = T 4 of M = T 6, the above χ(P ) = 0 but b1(P ) = b3(P ) = 2. Hence

the number of moduli is 8 for the T 4; three for the transverse fluctuation in the 789\ space,

two for the T 4 moduli in T 6 and three for the flux moduli as we verified explicitly.

6. Supertubes with 4 M2-charges

In this section, we consider the M-theory compactified on T 8 (or CY 4-fold) as a gener-

alization of the 3 M2-charge case. In this compactification, we consider the configuration

involving four M2-branes extended along (12), (34), (56), and (78) spatial directions of the

tangent space. This is what we call 4-charge supertubes in M-theory.

The setting to obtain the BPS equations from (2.1) to (2.9) are unchanged with a few

modifications. The indices a, b, c run now from 1 to 8 and m,n stand for 9 and \. The

relevant projection operator becomes now

ε = P1P2P3P4ε0, (6.1)
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where P1,2,3 are the same as before and P4 = 1+iΓ078

2 .

With the gauge choice a = t, H i0 = H50 = 0 automatically follow from the defini-

tion (3.19). The κ-symmetry condition gives

Γε =

√−g
√

−(g + iH)

( 1√−g
Γ0γ5Γabcdf

abcd +
1

2
H ijγijΓ0 + H i5γiγ5Γ0 −

−1

8

√−gεijklH
ijHklγ5Γ0 −

1

2

√−gεijklH
5iHjkγlΓ0

)

ε = −ε . (6.2)

The 3rd term in the big parenthesis cannot be canceled by others and, consequently, H i5 =

0.

With the help of the projection operators, the first term in the big parenthesis may be

arranged as

Γabcdf
abcdε = 3f ᾱβ̄γδδᾱδδβ̄γε + (fαβγδΓ̃αΓ̃βΓ̃γΓ̃δ − 6f ᾱβγδδᾱβΓ̃γΓ̃δ)η+

+(f ᾱβ̄γ̄δ̄Γ̃ᾱΓ̃β̄Γ̃γ̄Γ̃δ̄ − 6fαβ̄γ̄δ̄δβ̄αΓ̃γ̄Γ̃δ̄)η− , (6.3)

where η± = 1±Γ0

2 ε, and α, β, γ, δ are holomorphic indices running from 1 to 4. Thus one is

lead to the BPS equations,

fαβγδεαβγδ = 0 , f ᾱβγδδᾱβ = 0 . (6.4)

The holomorphic target space coordinates are given by Zα = Y 2α−1 + iY 2α. Again we

choose the gauge w1 = σ1 + iσ2 = Z1 and w2 = σ3 + iσ4 = Z2. Then the above equation

implies simply that Z3 and Z4 are holomorphic. Namely m5 is wrapping the holomorphic

four cycles.

The coefficient of γ5Γ0 has to be zero. After some algebra, this leads to the BPS

equation

1

8

√

g(4)εijklH
ijHkl = −1 , (6.5)

which agrees with the expression of the 3-charge case.

From the second term in the big parenthesis, one gets the BPS equation

Hw2w2 = Hw̄2w̄2 = 0 . (6.6)

Then the final remaining equation requires

gpq̄H
pq̄ =

√

−(g + iH)√−g
, (6.7)

where p, q (p̄, q̄) are the worldvolume (anti) holomorphic indices running over 1,2. This last

condition again automatically follows from the above BPS equations.

Hence the m5 are again described by the holomorphic four cycles of the eight manifold

M . Then the worldvolume flux of (1, 1) type satisfying (6.5) may be turned on.
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7. Conclusion

In this paper we have first discussed the 3-charge supertubes in the M-theory compactified

on M (that may be T 6 or CY 3-fold). The system under consideration consists of M2 branes

extended along the (12), (34) and (56) tangent space directions of the internal manifold

M . The four spatial directions of m5-branes wraps four cycles of M and the remaining

spatial direction forms an arbitrary curve in the space transverse to the internal manifold.

By analyzing the m5-brane action in detail, we have obtained the BPS equations gov-

erning the dynamics of the supertubes. The nature of their solutions are fully understood.

For some particular cases, we have worked out the solutions explicitly.

The most general supertube solutions involving 3 charges may be described as follows.

The four directions of m5 may wrap any holomorphic four cycle P , which is described by

the zero locus of the holomorphic function over M . The holomorphic four cycles are dual

to (1,1) type harmonic two forms restricted to the Kähler cone. As said in the above,

the remaining spatial direction forms an arbitrary curve in the transverse space. The

worldvolume flux may be turned on, which has to be (1,1) type in P . This two form flux

has to satisfy the nonlinear instanton equation.

The P may be deformed smoothly inside M and the dimension of this deformation

space is given by 2h2,0(P ). And also the solution space dimensions of the instanton equation

of the two form are shown to be given by h1,1(P )−1. Then the shape of P and the two form

flux may vary over the moduli space as we move along the curve directions as a function

of θ.

With fixed energy, angular momentum and other conserved charges, the number of

wraps of the cycles by m5 may be arbitrary as the m5-brane charges are not conserved

due to its dipole nature. However, by the continuity of the deformation along the curve

direction, the number of wraps cannot be changed along the curve directions because the

number is topological. In this sense, we expect that, in the moduli space of supertubes,

the number of wraps of P labels superselection sectors of the whole moduli space.

We have also included brief discussion of the 4-charge generalization.

After analyzing the most general configuration, the natural question is on the degen-

eracy of the configurations with fixed conserved charges. This investigation will lead to the

microscopic understanding of the entropy of supertubes. Since the system has an infinite

number of degrees classically, one has to quantize the moduli fluctuations properly. The

contribution of the fermions should also be included if there are any. In fact this problem

has been considered in ref. [40] but we would like to be more explicit and fill some possible

gaps. This will be our main subject of the further investigations.
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